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Abstract

A packet filteris a programmable selection criterion for classify-
ing or selecting packets from a packet stream in a generisatde
fashion. Previous work on packet filters falls roughly inkmtcate-
gories, namely those efforts that investigate flexible addresible
filter abstractions but sacrifice performance, and thoseftitas
on low-level, optimized filtering representations but g flex-
ibility. Applications like network monitoring and intrusin detec-
tion, however, require both high-level expressivenessrandper-
formance. In this paper, we propose a fully general packer fil
framework that affords both a high degree of flexibilépd good
performance. In our framework, a packet filter is expressed i
high-level language that is compiled into a highly efficieative
implementation. The optimization phase of the compilersuse
flowgraph set relation calleedge dominatorgand the novel appli-
cation of an optimization technique that we call “redundanetdi-
cate elimination,” in which we interleave partial redundgamlim-
ination, predicate assertion propagation, and flowgrapge edim-
ination to carry out the filter predicate optimization. Oasulting
packet-filtering framework, which we call BPF+, derivesrfrahe
BSD packet filter (BPF), and includes a filter program tratos|aa
byte code optimizer, a byte code safety verifier to allow cod®i-
grate across protection boundaries, and a just-in-timenaister to
convert byte codes to efficient native code. Despite the taglree
of flexibility afforded by our generalized framework, ourrfmg-
mance measurements show that our system achieves perfleman
comparable to state-of-the-art packet filter architectuaned better
than hand-coded filters written in C.

1 Introduction

Over the past decade, a number of innovative researchefiaue
built upon each other by iteratively refining the concept phaket
filter. First proposed by Mogul, Rashid, and Accetta in 1987 [16], a
packet filter in its simplest form is a programmable abstoscfor
a boolean predicate function applied to a stream of packessléct
some specific subset of that stream. While this filtering rhbele
been heavily exploited for network monitoring, traffic aadtion,
performance measurement, and user-level protocol dgrtexing,
more recently, filtering has been proposed for packet dlaatibn

in routers (e.g., for real-time services or layer-four ®hihg) [14,
20], firewall filtering, and intrusion detection [19].

The earliest representations for packet filters were based o
an imperative execution model. In this form, a packet fil&r i
represented as a sequence of instructions that conformnbe so
abstract virtual machine, much as modern Java byte codes rep
resent programs that can be executed on a Java virtual neachin
Mogul et al’s original packet filter (known as the CMU/Stanford
packet filter or CSPF) was based on a stack-oriented virt@al m
chine, where selected packet contents could be pushed ala st
and boolean and arithmetic operations could be performed ov
these stack operands. The BSD packet filter (BPF) modernized
CSPF with a higher-performance register-model instruncsiet. Sub-
sequent research introduced a number of further improvesntre
Mach Packet Filter (MPF) extended BPF to efficiently support
arbitrary number of independent filters [24]; PathFindesvied
a new virtual machine abstraction based on pattern-majdhiat
achieved impressive performance enhancements and washl@aen
to hardware implementation [2]; and DPF enhanced Pathfsnder
core model with dynamic-code generation (DCG) to exploit-ru
time knowledge for even greater performance [7]. An altévea
approach to the imperative style of packet filtering was evqu by
Jayaram and Cytron [13]. A filter specification takes the fafra
set of rules written as a context-free grammar. An LR parsent
interprets the grammar on the fly for each processed packet.

More recent work on packet classification for “layer four wilar
ing” has focused on table-based representations of prediean-
plates to yield very high filtering performance. Srinivagaal.[20]
propose a special data structure that they call a “grid estrio re-
duce the common case of source/destination classificatiarfew
memory references, while Lakshman and Stiliadis [14] eldga
cast packet classification as the multidimensional poination
problem from computational geometry.

None of the earlier work addresses the issue of compiling an
abstract, declarative representation of a packet filter ant effi-
cient low-level form. It also does not consider the minintiaa of
computation by exploiting semantic redundancies acrodsptay
independent filters in a generalizable fashion. Work on sapth
mizations has not been forthcoming for good reason. If weehod
a packet filter program as a function of boolean predicatescan
reduce filter optimization to the “decision tree reducti¢ii] prob-
lem. Since this problem is “NP-complete”, we know that fithpti-
mization is a hard problem. As a natural consequence, dedise
reduction methods have relied upbeuristicsfor optimization [5].

Fortunately, many packet filters have a regular structusewe
can use to our advantage in our optimization framework. Oag w
to exploit this structure is to account for it in the undenlyffiltering
engine itself. Both PathFinder and MPF are based on thigdesi
principle: PathFinder utilizes a template-based matclsicigeme
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Figure 1: System architecture diagram for BPF+. A filter, represented in a high-level language, is compiled and optimized into
the BPF+ virtual machine intermediate representation. After traversing protection boundary, the protected domain verifies the
filter code specification, and either interprets the byte codes or assembles them on-the-fly into native code.

that is nicely amenable to the computation required for ipgrs
packet headers, while MPF extends BPF with specific opcdudes t
provide a particular solution tuned to demultiplexing.

monitoring tooltcpdump[12] and provides the in-kernel filtering
facility in 4.4BSD-derived Unixes and Digital Unix. Becaubp-
cap provides a flexible filtering framework and because itteen

Although these sorts of assumptions are an important compo- ported to a wide variety of platforms, libpcap has becomefad®e

nent of any overall packet filter system, they fail to addsekat we
believe is the ripest opportunity for packet filter optintina: the
application ofglobal optimizatioralgorithms across the filter pred-
icate flow graph to minimize the average path length throingth t
graph. In contrast, the MPF extensions of BPF, PathFindet, a
DPF all use pattern-matching heuristics that opelatally, e.g.,
they do not necessarily eliminate common subexpressiomssac
the predicates, nor do they detect the equivalence of sécalynt
equivalent boolean expressions. In fact, they eitheriotshre set
of expressible filters to those with a regular structure twat be
matched by simple patterns, or they require that the “filter-p
grammer” expresses the filter in a compact and already-dgin
low-level representation. Although this may be a reasandbbign
assumption in “low level” environments (e.g., where an O&@r
col module creates a packet filter to match its signaturdicrat
in the x-kernel [9]), it is less applicable to “high level” aains
(e.g., where a user specifies a filter in an expressive highl-lan-
guage and a compiler generates the actual low-level filtée)dn
this latter case, the front end code generator would tyfyicedns-
late a complex filter expression into a number of redundackgta
sub-predicates; thus, optimization becomes especialppitant to
eliminate the redundant code.

In this paper, we propose optimization techniques thataéixpl
well-known data-flow optimization algorithms in a novel winy
the generalized optimization of packet filters. Our datafld-
gorithm, which we call “redundant predicate eliminatioimter-
leaves partial redundancy elimination, predicate assenropa-
gation, and flowgraph edge elimination to effect predicghé-o
mization. In particular, we employ a set relationship chkelge
dominatorghat extends the traditional node dominator relationship
from flowgraph nodes to edges and provides the key ingreétent
our predicate optimizations. We also leverage the patteaitehing
heuristic, developed in the PathFinder and DPF work, in @akb
end, as a lookup table optimization performed after the rexhof
redundant predicates. Armed with our global data-flow ojatam
tions, we can afford the flexibility of a high-level represstion for
packet filters since we can compile and optimize them intov@at
implementations that achieve state-of-the-art perfocadrom the
resulting packet-filter code.

The core of our optimization framework was developed, vali-
dated, and distilled a number of years ago within the BSD g@lack
filter (BPF) architecture. BPF has proven to be not only aarint
esting research artifact, seeding a range of subsequetk \wor
has been broadly adopted in practice: it is the cornerstdrieo
widely used packet capture librafyppcap [11] and the network

standard for packet filtering and has thus become integiatec
number of publicly available and commercial applicatioosrfet-
working monitoring, intrusion detection, and penetratiesting.
Since their initial release, libpcap and tcpdump have begieved
over 100,000 times from the LBNL public distribution site.
Building on this earlier work, we describe herein a refined pa
cket filter architecture that underlies yet is orthogonalilbhpcap
and tcpdump. This new architecture, which we call BPF+, af-
fords a substantially refined, improved, and generalizesiigtie an
extended optimization framework based on “static singkigas
ment” (SSA) [6], and a number of new optimization primitivés
depicted in Figure 1, the BPF+ system consists of a serveral s
quentially arranged components that transform a hightlgiter
language specification into an low-level executable paftket:

e The input to the front end is a high-level language for filter
expressions based on the declarative predicate syntaxrused
the original libpcap and tcpdump.

The BPF+ compiler translates the predicate language into an
imperative, control-flow graph representation with an SSA
intermediate. SSA is particularly well-suited for our opti
mization algorithms.

The SSA intermediate representation is fed forward to the
code optimizer, which performs both global and local data-
flow optimizations over the control-flow graph form of the
intermediate code. The output of the optimizer is a byte
code representation that conforms to the BPF+ virtual ma-
chine model, which is a RISC-like register-based variant of
the accumulator-based virtual machine definition of thg-ori
inal BPF pseudo-machine [15].

The BPF+ byte codes are then delivered to an execution envi-
ronment, e.g., across the user-kernel boundary to implemen
user-defined protocol demultiplexing, or across the networ
and into a switching element to implement an externally-
defined network service like policy-based traffic managdmen

L This work proceeded in two major stages: in 1990, Steven Mo€aproduced
the initial design and implementation at the Lawrence Blesk&lational Laboratory
(LBNL) in collaboration with Van Jacobson and Susan Graham]998, Andrew
Begel modularized the architecture and refined, improved extended the optimiza-
tion framework, in part by retrofitting SSA into the internat representation, in col-
laboration with and Steven McCanne and Susan Graham at l&®eRy and Vern
Paxson at the Lawrence Berkeley National Laboratory. ThHeeeaork was published
only in part: the filtering engine was described in [15], the filter language compiler
and optimization framework was never published.



e Once received in the target protected domain, the safety ver
ifier ensures the program’s integrity.

e Finally, a “just in time” (JIT) assembler translates the op-
timized and safety-verified byte codes into native code and
performs optional machine-dependent optimization. Tdss |
stage is omitted if the target environment is an interpreter
rather than native hardware, e.g., as with the BPF kernel im-
plementation, which interprets filters in the byte code form

In the remainder of this paper, we motivate, describe antl eva
uate the components of the BPF+ architecture. We first @utlin
related packet filtering technologies and identify soméhefrtlim-
itations We then present the BPF+ front end: its high-levtrfi
ing language, the virtual machine model, and the compilat th
generates the SSA intermediate form. Next, we describe it 0
mization framework based on the set of local and global tave-
algorithms and their interactions. Subsequently, we desdhe
back end that verifies the integrity of the byte-code repred®on
and optionally transforms that representation into a eatiachine
code. To demonstrate the efficacy of our approach, we thesepte
measurements of our implementation that show that BPF-operf
mance is comparable to existing packet filter implemematide-
spite its enhanced flexibility. Finally, we summarize ouard for
future work and conclude.

2 Background

In its widely used form, the BPF kernel sub-system represeath
user-specified filter as a separate entity. Each filter is ruevery
incoming packet. Hence, if BPF were used to implement wesart
protocols, for instance, the demultiplexing overhead daadale
linearly with the number of filters, e.g., a busy server witany
simultaneous network connections would suffer linear slown

as each connection would independently run the packet dittéts

own stream.

To overcome this limitation, MPF enhanced the BPF virtual
machine with instructions for efficient protocol demuléging. Ra-
ther than represent each filter separately, MPF exploitstteture
of demultiplexing filter specifications to recognize thabtfilters
are similar up to, say, the transport header port fields gusimple
template-matching heuristics. Once MPF detects this aiity it
merges the new predicate with the existing filter by expamdire
existing port checks to include the new port number, for eplam

PathFinder generalizes the MPF heuristic with a re-desidjihe
tering engine that is better matched to the pattern-magctiams-
formation. In this framework, templates called “cells” repent
packet field predicates, which are chained together in a"lifthis
line of cells represents a logical AND operation over thestibent
predicates. A collection of lines is arranged into a chaiprefdi-
cates, which represents the logical OR over all lines. Aadliare
installed into this chain, PathFinder eliminates commazfipes.

For example, if process P requests TCP packets sent to port
and process Q requests TCP packets sent to port B, then thie res
ing filter logic would have the following form:

if link layer type = I P and
I P fragnent offset = 0 and
I P protocol = TCP and

TCP dest port = A
then deliver pkt to P
else if link layer type = I P and
I P fragnent offset = 0 and
I P protocol = TCP and
TCP dest port = B
then deliver pkt to Q

Upon processing the second filter, PathFinder would re@egni
the common prefix and simply extend the first if-clause a®¥adt

if link layer type = I P and
IP fragnent offset = 0 and
| P protocol = TCP

t hen
if TCP dest port = A

then deliver pkt to P
else if TCP dest port = B
then deliver pkt to Q

Since the inner if-else statement is effectively a “switolrér
the destination port field, a jump table (perhaps using aepéerf
hash over the target value set) could be used to implemen{Bn O
match, and PathFinder does precisely that.

DPF utilizes the same template-matching approach as Path-
Finder (templates are called “cells” in PathFinder and rffa&bin
DPF), but introduces a new low-level language and employs dy
namic code generation to attain performance improvemeres o
other interpreter-based implementations. Its new langisbased
on a “read window” which may be shifted and masked to match
words in the packet to various immediate constants. Givet a fi
ter specified in this language, DPF coalesces common préfites
lines, performs some additional local optimizations, agdani-
cally generates native machine code to directly evaluadiltier.

The more recent works geared toward layer-four switchirfg [1
20] take the DPF and PathFinder approaches to an extremeg whe
the entire model is based on a set of templates that are naatche
against known constants (or known constant ranges).

While the template-matching model yields good performance
there are a number of shortcomings associated with the igaodn
For example, it is not possible to match fields in the packatlbe
against one another, for instance, to look for packets thgt-o
nate and terminate in the same network (“source network + des
network™). Nor is it possible to perform arbitrary mathemaat op-
erations on header words before matching.

DPF and PathFinder resort to a setadfhocheuristics for pro-
ducing efficient filters by coalescing common prefixes. Thase
timizations are foiled in PathFinder when predicates apedered.
DPF, however, enforces in-order packet header travetsad,dcom-
mon prefixes will always appear in the same order. Howeveenvh
the filter itself does not conform to the same order as othreadly
installed filters, prefix compression fails.

To illustrate this pathology, consider the packet filtel tathe
packets sent between host X and host Y”. In a boolean frantewor
we would specify this filter as “(source host X and dest host Y)
or (source host Y and dest host X)”, and in flowgraph form, the
expression would appear as in Figure 2. Here, basic bloaks ar
represented by nodes and boolean control transfers aretelé iy
edges. By convention, false branches point to the left.

In this case, DPF, finding no common prefix and unable to re-
order the checks to obtain a common prefix, would compile the
condition into two separate filters that are sequentialiyoked.
However, there is opportunity for optimization, which DPyrie-

Acessity must miss. If the thread of control during filter exzion

reaches the node “dest host Y,” then we necessarily knowtltleat
source host is X. Furthermore, from that vantage point, waakn
that the source host cannot be Y and that the node pointed to by
the dashed edge is redundant. But, we cannot eliminate tlecs
host Y” node yet because there exists another path (fromothtg r
for which the check is not statically known. Therefore, eoaurse
for optimization is to transform the dashed edge so thatiitpdo
the FALSE node, thus reducing the average path length thrthey
flowgraph (and in turn, enhancing filter execution perforogn

This is the sort of global data-flow optimization we want te ex
ploit in our packet filter optimizer. Having establishedsthontext,
we can now present the core pieces of the overall systemrdesig
beginning in the next section with the BPF+ machine model.



Figure 2: Control-flow graph for “(src host X and dst host Y)
or (src host Y and dst host X)”. The dashed edge points to
a redundant predicate and may be redirected to the FALSE
node.

3 The BPF+ Machine Model

Before presenting the details of the translation modules tiap
filter predicates to the BPF+ machine representation, wiekke
this section a high-level overview of the BPF+ machine madel
establish context for the rest of the paper. This versiomefBPF
virtual machine represents a number of iterative refinemerade
over the past several years to the original BPF machine model

The BPF+ abstract machine is a RISC-like, 32-bit, loadestor
architecture consisting of a set of 32 general purpose tagisa
program counter, read/write data memory, read-only paciern-
ory, a packet length register, and a pseudo-random regisfiter
program is represented as an array of byte codes that corfoam
well-defined instruction format.

The BPF+ virtual machine supports five classes of operations

e loadinstructions copy a value into a register. The source can

branch instructions, we add a lookup table instruction tstralot
multiway conditional branches for later just-in-time aptzation.

We omit the details of the instruction format and throughbet
rest of this paper use an assembly language syntax thaativedy
self-explanatory. For example, a simple BPF+ byte-code program
that matches TCP packets has the following form:

Ih
jne
Ib
jne
ret
ret

[12], 10
10, #ETHERTYPEP, L5
[23], 11

rl, #IPPROTOTCP, L5
#TRUE

L5: #FALSE

Presuming Ethernet encapsulation, this filter first chebles t
the packet is an IP packet. If so, it checks if the IP protogpétis
TCP, in which case it branches to an instruction that rettrres In
any other case, the program branches to line L5 and retulses fa

This form of representation is far too low-level for many &pp
cations of packet filters. In the next section, we argue tigi-h
level filtering languages are important for a number of peatdo-
mains and we sketch the characteristics of the high-leveifilg
language that BPF+ employs.

4 The Predicate Language

The input to our system is a high-level filter representeddeclar-
ative predicate language. By employing a high-level lagguave
hide the complexity and details of the underlying, impeaex-
ecution model of the BPF+ virtual machine. This facilitatee
expression of complex boolean relationships among marfigreif
ent predicates using natural logical expressions rathem dwk-
ward control structures. Unlike other high-performanceke fil-
ter packages that have adopted more restrictive semaotitisdir
packet filter abstractions (e.g., the template matchingetpdve
retain the full generality of a programmable, control-flovagh
model for our virtual filter machine.

There are many reasons to support higher-level abstractovn
packet filtering. To begin with, the system should hide thite

be an immediate value, packet data at a fixed offset, packet of where particular fields are located in a packet and hovater
data at a variable offset, the packet length constant, or the length headers must be parsed to locate those fields. Fompéxam
scratch memory store (a reference to data beyond the end of BPF+ refers to the IP destination address field in a packdPadst

the packet results in a return value of 0);

e thestoreinstruction copies a register into a fixed location in
data memory;

e ALUinstructions perform arithmetic or logic on a register us-

ing a register or a constant as an operand and a register as th

destination (division by zero causes the filter to immedijate
return a value of zero);

e branchinstructions alter the flow of control, based on a com-

host” rather than “packet[20:4]". Additionally, a seemiygimple
BPF+ expression like “TCP port HTTP” turns out to have a rela-
tively complex low-level structure that should not be a lrdo
the filter programmer (i.e., in this case, the packet mustFhéfl
fragmented, it must be the first fragment so as to contain Fhe |
header; there may be IP options which must be skipped overdo fi

&he TCP ports; and finally both the source and the destindi@iA

port field must be checked against the constant 80).
This sort of high-level representation is crucial if a huneser
is specifying the packet filters. While a low-level pattepes-

parison test between a register and an immediate value orification might have sufficient generality and simultanepuse

another register; and,

e returninstructions terminate the filter and indicate the integer-
valued result of evaluation.

A filter is evaluated by initializing the packet memory to the
packet in question and executing byte codes on the BPF+ m&chi
until a return instruction is reached. The data memory isiper
tent and may be queried by agents external to the filter engine
pseudo-random register is a read-only register that retaroni-
formly distributed random value each time read, which is e-us
ful primitive for building filters that can perform probatstic sam-
pling. To facilitate safety verification, we require thak plogram
branches be forward (thus forgoing loops) and that the testuc-
tion on each path be a “return”. In addition to the set of cbadal

amenable to an efficient implementation, a network adnaxtist
that is diagnosing network malfunctions on-the-fly or chgsiown

an intruder in real-time must have a flexible and easy-tosyse

tax for specifying packet predicates. Thus, a high-levedprate
syntax that allows one to look for, say, packets “between kit
UCB?” that are "HTTP connections” should be naturally and-eas
ily specified. To this end, the user should be able to spedifichv
fields of the packets they want to match and connect those-pred
cates with boolean operators “and”, “or”, and “not”. In BRRhe
filter would look like this expression:

2There are four types of load instructions: “Id” is load wofith” is load half word,
“Ib” is load byte, and “Ii” is load immediate. There are se\®@anch operations: “jeq”
is jump if equal, “jne” is jump if not equal, “jIt” is jump if Ies than, “jle” is jump if
less than or equal, “jgt” is jump if greater than”, “jge” isyp if greater than or equal,
“ja” is an unconditional jump.



((src network MT and dst network UCB) or
(src network UCB and dst network M T)) and
(TCP port HTTP)

By contrast, the same expression written in DPF’s quite low-
level SHIFT language would look like the following:

(((12:16 == 0x8) && # IP?
SH FT(6 + 6 + 2) && # skip Ether header
(9:8 == 6) && # TCP?
(12: 8 == 18) &% # src network MT?
(16: 16 == 0x8020) && # dst network UCB?
SHI FT(20) && # skip | P header
# (assune fixed | ength)
(0:16 == 80) &% # src port 807
(2:16 == 80)) # dst port 807
[
((12:16 == 0x8) && # I P?
SH FT(6 + 6 + 2) && # skip Ether header
(9:8 == 6) && # TCP?
(12:16 == 0x8020) && # src network UCB?
(16:8 == 18) && # dst network M T?
SHI FT(20) && # skip | P header
# (assune fixed | ength)
(0:16 == 80) &% # src port 807
(2:16 == 80)) # dst port 807

Each time the set changes (because a connection startge},sto
we can invoke the optimizer and back end on the altered form to
produce our new aggregate filter program.

Another advantage of the separation between the compiter an
optimizer is that the code generator is greatly simplifiedr &x-
ample, consider the way we generate code for short-cirditg-
ical predicates. In an expression likeo“andp:,” p: is evaluated
only if po is true. However, the second predicate might contain
sub-predicates that have already been evaluated in thefadt-
cate. For example, the expression may have a decomposition,
which another predicatgs represents a common protocol check,
e.g., “(p4 andpo) and (ps andp,)”. Factoring out common pred-
icates during code generation would be a complex task. Ttie op
mizer, on the other hand, is well suited to the eliminatiothés sort
of redundancy. Thus, our code generator can be relativeiplsi
and straightforward and rely on optimization to achieveceficy.

In short, we have adopted an approach where we transform the
predicate language into an intermediate form through nabre-
pilation, and then apply aggressive optimizations to fi@mns the
result into an optimized BPF+ byte-code program.

The BPF+ compiler uses off-the-shelf lexical analysis aaigp
ing tools as well as well-known compiler techniques to contree
filter specification into a control-flow graph in SSA interniete

In the middle ground between a predicate language and a fully form. SSA is a modern intermediate representation used tin op

general pattern specification language, we interpose titigyab
match various fields of the packet in relation to each othed a
the ability to perform mathematical operations on the fidefore
matching them. Thus, for example, to track down a TCP prdtoco
bug, we might need to extract all the packets from a traceféfiat
within a certain range of TCP sequence numbers.

Finally, moving beyond the scope of BPF+, users may want to
combine the aforementioned filter language approaches @me c
pose them with a policy language that enables the runtimersys
to apply a filter at a particular time (e.qg., for probabilissampling
of packets meeting a particular predicate), add a filter. (&.¢he
source address of an intruder has been identified), or remdie
ter from use (e.g., if a particular email adversary sendslicited
mass email only at certain times of the day).

Designing a language that meets these requirements isfhot di
ficult. Several languages have been devised, for exampefjlth
tering language in the Lawrence Berkeley National Labayégo
packet capture librarlibpcap Sun’setherfindprogram, and Digi-
tal's snooptool. Since the BPF+ design is built upon BRBpcap
andtcpdump we naturally incorporated thépcap language into
our system. We omit the details of this well-known and widedgd
packet capture system, which is described elsewhere [11, 12

5 The Front End

Given our high-level filter language and our low-level filtma-
chine model, we are faced with the problem of translatingffilt
predicates into BPF+ byte codes. Rather than integratslaton
and optimization into a monolithic framework, as PathFinaled
DPF have done, we have deliberately separated the tramstitige
from the optimization stage. This has a number of advantages
First, it would allow us to create different front ends anghilevel
languages that can be optimized and carried by the same hdck e
Second, it allows us to evolve and develop the two stagepearde
dently. An improvement to the optimization framework need n
require changes to the high-level language defined in thre é&od.
Finally, this breakdown provides a framework for increnagiyt
composing filters on the fly, e.g., as required by user-levelop
col demultiplexing where filters are installed and removgdain-
ically. More specifically, a set of active filters (each indivally
representing a given connection fingerprint) can be maiathin
predicate form so that filters may be easily inserted andteidle

mizing compilers, in which the abstract data values are redpa
from the locations in which they are stored. The key propefty
SSA is that any register is written exactly once, so we assiate
we have an infinite supply of registers with which to work. tinrt,
we rely upon a register allocator to map this unbounded numibe
virtual registers into a finite set of physical registersASShighly
amenable to many simple but effective forms of global date-fl
optimization, and we heavily exploit this property in oustsm.

Each node in the control-flow graph generated by the BPF+
compiler is a basic block in SSA form that ends with a boolean
predicate. There is one unique entry node, and flow movesghro
the graph until it reaches a “return” statement. At the endawth
basic block, the flow may branch based on the value of the predi
cate. Flow may only move forward (downward through the gjaph
this property is enforced by the requirement that brancledf
must be positive. Thus, the entire graph is guaranteed toyudia®

6 The Optimizer

The price that we pay for our naive SSA form code generation is
many computational and logical redundancies. This result
overabundance of code, conditional branches, and alldcatgs-
ters. Thus, optimization of the generated code is vitallpantant
for improving its performance and justifying the cost of thigh-
level starting point. In this section, we describe the glalada-flow
optimizations and peephole optimizations that are peréaron the
intermediate code — which remove redundancies, rearrange n
optimal code sequences and identify potential lookup &ablein
order to generate efficient code.

In addition to incorporating many standard optimizatiomsrfd
in traditional compilers, the BPF+ optimizer introducesoel ap-
plication of redundant predicate eliminatiofl7, 22]. This opti-
mization is rarely found in compilers for traditional larages like
C or Java because redundant predicates do not occur very ofte
and the optimization would not be very profitable. Howeweithie
domain of packet filter compilation, BPF+'s naive code gatmr
produces decision trees with many redundant predicateselii
making this optimization one of the most useful that can lptieg.

3The fact that BPF+ flowgraphs are acyclic simplifies data-ftabculations con-
siderably. Because all information flows only up (or only awa minimal fixed point
solution can be reached with a single top-down (or bottonleyel-order traversal of
the control-flow graph.



The next four sections describe our optimizations in more de either edge could have been taken on exit frdin On the other

tail. In the first section, we introduce the redundant praielim-
ination and its composition from partial redundancy eliatian,
predicate assertion propagation, and redundant edgeneliiom.
Then, we illustrate the peephole optimizations that aréopsed
within the basic blocks. We also use constant folding andstzom
propagation to help identify and eliminate redundant cotaions
in the global data flow phase of optimization. After the otbpr
timizations have completed, we enter a jump table encajisala
phase to optimize linear sequences of predicates. Fina#yro
register allocation and assignment to map each remainingbla
to an actual register in the BPF+ virtual machine.

To get a feel for the potential of the redundant predicatmieli

nation optimization, consider the following filter:
IP src host Aor IP src host B

Without optimization, this expression is compiled into fbe
lowing code?

Ih [12], rO

L1: jeq r0, #ETHERTYPHP, L3
ja L5

L3: Id [26], r1
jeq rl, #A, L11

L5:  h [12],r2

L6: jeq r2, #ETHERTYPHP, L8
ja  L10

L8: Id [26], r3
jeq r3,#B,L11

L10: ret #FALSE

L11: ret #TRUE

Note that both predicates test whether the packet is IPeSinc

the first test (line L1) always occurs before the second (li6g
the second test is redundant and may be eliminated. Thegpnobl
is better visualized by analyzing the program in flow graphmfo
Figure 3 shows the basic blocks and control edges that qumnels
to the filter above. By convention, false branches are toefteof
true branches. The nodes are numbered for reference. Thedlas
boxes indicate the two predicatéB,src host AandIP src host B

Ih [12], O

jeq 0, #ETHERTYPE_IP)
Id [26], r1
jeqrl, #A

Figure 3:Unoptimized version of “IP src host A or B”.

Since control must pass through > before reachingVs, and
sinceN; and N3 perform equivalent testsys is redundant. How-

ever, atNs, it is not known whether the result is true or false, since

4Logic is inverted in several places to make the conditiomahbh code more
straightforward to read. The compiler back end optimizesatuer of the basic blocks
to minimize the need for absolute jumps.

5Let N; denote node i.

hand, we know the result aV; from the vantage point of the in-
bound edges. Therefore, our approach is to find edges thattpoi
redundant nodes, and point them past the redundancy.

For instance, along edgB»3® we know thatN; is true; and
since N; and N3 perform equivalent testsys must be true from
this vantage point. Thus, edde»s can be deleted, and edd®.
inserted. Similarly, if flow passes alorig 5, thenNs will be false;
hence,E:; can be replaced b¥;5. The resulting flow graph is
shown in Figure 4. A reachability analysis will discoverthé; is
now unreachable and eliminate the dead code from the graph.

Ih [12], 10

jeq r0, #ETHERTYPE_IP)
1d [26], r1
jeqrl, #A

Figure 4:Moving the edges.

As is often the case in optimization algorithms, one classpef
timizations will expose opportunities for others. Heree tbdge

movements have caused a load operation to become redundant.

Since the in-degree aW, is reduced to one after the dead code
at Vs is eliminated, we know tha¥V, and NV, load the same value.
Thus, the second load &, can be removed. Figure 5 shows the

flow graph in its final form.

jeqrl, #B
4

5 6

Figure 5:The optimized filter.

6.1 Redundant Predicate Elimination

Redundant predicate elimination is an optimization usedeter-
mine, at compile-time, which predicates found in the cdrftimw

SLet F;; denote the directed edge froivi; to IV;.



graph may be bypassed by particular flow edges. This optimiza
tion is composed of three piecegartial redundancy eliminatign
used to eliminate redundant computation within the nodethef
control-flow graph;predicate assertion propagatiora data-flow
analysis used to flow the values of determinable predichtesigh

the control-flow graph; andtatic predicate predictionwhich uses
the assertion information to identify statically deteratite condi-
tional branches and bypass them whenever possible.

6.1.1 Partial Redundancy Elimination

Our use of SSA form, combined with BPF+'s acyclic controlflo
graph, enables the optimizer to identify and eliminate aificant
amount of redundant computation. In the code from our simple
code generator, most redundancies are loads from packebrpem
and oft-repeated ALU operations.

In order to determine which computations are redundant, we
first establish a metric of value equivalence. We use a valme-n
bering scheme for each register to indicate its source defni
Each definition, which can be a defining computation, a loathfr
memory, or a register-to-register copy, is identified by &ua ID
which can be used to indicate whether two variables havedime s
definition.

We compute the@ode dominatorelation over the control-flow
graph and look over every register’s definition. This relatiden-
tifies which nodes must be traversed in order to go from theyent
node to each node in the control-flow graph. If at a given ntuke,
value assigned to a register has already been computed imia do
nating node, the second definition is redundaie then replace
the redundant computation with a register-to-registeydogm the
dominating defining register. Afterwards, using copy piggtéon,
we replace all later uses of the second register with the frstib-
sequent dead store elimination phase will remove the novesse
register and the corresponding register-to-register copy

This implementation only achieves partial redundancy ielém
tion, however, since redundancies may only be identifiecediddd
when found in dominating relationships. We shall see hownthe
two phases of redundant predicate elimination can improgest-
fectiveness of this optimization if we apply them one afteotaer.

6.1.2 Predicate Assertion Propagation

The example shown at the beginning of Section 6 assumesra prio
that we can make certain edge movements without comprognisin
the semantics of the program. In actuality, we must be aicaliyt
precise that such transformations are legitimate. Thiblpro can

be solved through a global data-flow analysis.

The traditional approach to global data-flow problems tgfbyc
involves computing set relations over the nodes of a flowgrap
However, as first seen in Cocke and Schwartz [4] and latepéxepl
by Graham and Wegman [8], applying the data-flow functions to

evaluated a true condition, otherwise fhkseedgefalse(pred;;)

is traversed. Suppose an edfjg dominates an edggy;. If the
edge predicate d;; is equivalent to the predicate of the successor
nodeN, of E};, then we know the outcome &;, when traversed
from E,;. Hence, we can deletB,; and insert a new edge from
Ny, the predecessor @&, to the appropriate child a¥;, provided

no conflicting inter-block data dependencies exist.

We use a simple data-flow algorithm to abstractly define the
value of each predicate in the control-flow graph. If a pratic
ends up with a statically determinable value, we may bypass t
predicate with a new control-flow edge. First, we computeciiige
dominator relationshipin a fashion similar to the node dominators
algorithm given by Aho, Sethi, and Ullman [1]. The set raiati
which we calledom is given by the following equation:

M

Pepred(E)

edom(E) = {E} U{ edom(P)}

We then usedomto calculatedon

VE € edges,
idom(FE) = edom(E) — {E},
VE € edges,
VF € idom(E),
VG € idom(E) — {F},
if G € idom(F)
idom(FE) = idom(E) — {G}

The immediate dominator relation forms a forest of treessneh
each edge in the control-flow graph is a node in a tree. Thespred
cessor of each node is its immediate dominator and its ssorses
are those nodes which it immediately dominates. We usertss t
in the next phase of predicate assertion propagation.

For each edge in the control-flow graph, there are a set of as-
sertions that we can make about the values of the predicktes.
instance, the false edge coming out of a node that tested¢lde p
icatea = 6 would contain the assertion that# 6. In addition,
the assertions for all of the edge dominators of a particetige
also hold true for that edge, since those edge dominators lneus
traversed in order to reach it. The assertion set relatigiven by:

assertion(E) ={<predicate(pred(E)),sense(E)>}
U assertion (idom(E))

Each element of the assertion set is a tuple of the predicate
testedassertion(E).predicatand the value of the proven answer
assertion(E).sense
6.1.3 Static Predicate Prediction

Now that we have the assertion set for each edge, we are ready t

edgesrather than nodes can have substantial advantages. This isuse this information to predict statically determinabledicates.

indeed the case for BPF+ flow graphs.

In general, the problem of proving that a set of assertiordien

First, we extend some standard node terminology to edges: An a certain result is NP-complete, however, there is a smalbfe

edgeE;; (defined by a predecessor nqaed(E;;) and a successor
nodesucc;;)) dominatesnother edg&,;, written E;; domEy,,
if every possible execution path from the entry nod&tgincludes
E;;. In addition, an edg#;; immediately dominates another edge
Ey, if E;; dominatesEy,; andthere is no edgé,, such thate;;
dominatesE,, andE,, dominatesEy,;.

Since every basic block ends with a predicate, an ggigeep-
resents the truth valusensel;; ) of a predicatredicate(predg;; ))
— atrue edgetrue(pred;;)) is traversed if the predecessor node

Since our SSA form control-flow graph is acyclic, and eaclistegis only defined
once, we do not have to check whether the register’s valuathiave been changed
before the second definition is reached.

rules that we can use in practice to prove many assertiong e
predicates typically found in packet filters. The rules usg@PF+
are shown in Table 1.

Beyond these few entries, a generalized theorem proverdvoul
be necessary to make more involved implications from thergaet
of assertions. However, it turns out that the most-usedigapbns
come from thg eq andj ne entries of the table.

For a particular edgé, if the assertions imssertion(E)stati-
cally provepredicate(succ(E)jo be true or false, then on this path,
edgeF may bypass the redundant predicate and we may remap the

8The fact that BPF+ flowgraphs are acyclic allows us to comthisdflow equation
in O(| E|) time.



Input Output
Assertion Sense Predicate Sense
jeq #lval #rval | TRUE | jeq #lval #rval TRUE
jeq #lval #rval | TRUE | jne #lval #rval FALSE
jeq #lval #rval | TRUE | jlit  #lval #rval FALSE
jeq #lval #rval | TRUE | jgt #lval #rval FALSE
jeq #lval  #rval FALSE | jeq #lval #rval FALSE
jeq #lval  #rval FALSE | jne #lval #rval TRUE
jeq #lval #rvall| TRUE | jeq #lval #rval2 || FALSE
jne #lval #rval | TRUE | jne #lval #rval TRUE
jne  #lval #rval | TRUE | jeq #lval #rval FALSE
jne  #lval #rval | FALSE | jeq #lval #rval TRUE
jne  #lval #rval | FALSE | jne #lval #rval FALSE
jne  #lval #rvall | FALSE | jne #lval #rval2 || TRUE
jit #lval  #rval TRUE | jit #lval  #rval TRUE
jit #lval  #rval TRUE | jeq #lval #rval FALSE
jit #lval  #rval TRUE | jge #lval #rval FALSE
jit #val  #rval TRUE | jgt #val #rval FALSE
jit #ival  #rval FALSE | jlt  #lval  #rval FALSE
jit #lval  #rval FALSE | jge #lval #rval TRUE
jgt  #val  #rval TRUE | jgt #val #rval TRUE
jogt  #lval  #rval TRUE | jeq #lval #rval FALSE
jogt  #lval  #rval TRUE | jle  #lval #rval FALSE
jgt  #lval  #rval TRUE | jlt  #lval #rval FALSE
jgt  #lval  #rval FALSE | jgt  #lval  #rval FALSE
jogt  #lval  #rval FALSE | jle  #lval #rval TRUE
jle  #val  #rval TRUE | jle  #val #rval TRUE
jle  #lval  #rval TRUE | jgt #lval #rval FALSE
jle  #lval  #rval FALSE | jle  #lval #rval FALSE
jle  #lval  #rval FALSE | jgt  #lval  #rval TRUE
jge #lval #rval | TRUE | jge #lval #rval TRUE
jge  #lval #rval | TRUE | jlit  #lval #rval FALSE
jge  #lval #rval | FALSE | jge #lval #rval FALSE
jge  #lval  #rval FALSE | jit #lval  #rval TRUE
All other inputs return “undefined”

Table 1:Lookup Table for Predicate Algebra.

edge’s successor to the predicted childsofc(E) We may do this
only with the guarantee that the edge movement does notte@iola
data dependencies that occur later on in the flow graph. fBpeci
cally, if any registers defined in the node to be bypassed sed u
by any other node on the predicted path, we must forbid theemov
ment. More formally, the algorithm looks like this:

VE € edges,
V(pred, sense) € assertion(E),
let N = succ(E),
P = predicate(N),
mn
if table(pred, sense, P) = TRUE
succ(E) = succ(true(V))
if table(pred, sense, P) = FALSE
succ(E) = succ(false(N))

The combination of partial redundancy elimination, pratkc
assertion propagation, and static predicate predictioepgated
until there are no new changes. Each data-flow phase remtsves i
own redundancies, and in doing so, exposes new redundancies
be removed by the next phase. Partial redundancy elimima¢io
moves data dependencies that might inhibit edge removaiiesis
static predicate prediction exposes newly redundant ceetipn.

6.2 Peephole Optimizations

During each round of the redundant predicate optimizatienper-
form peephole optimizations on code within each basic bléak
example, an ALU operation with an identity may be removed. A

Next, we use copy propagation to track computations on con-
stants as they move through the control-flow graph. When we ha
register-register operations in which one of the registessknown
constant, we can transform the operation into its equivasgister-
immediate form (provided that either the operation is cortative
or the transformation does not change the order of the argtghe
When both values (either both registers or the register agaster-
immediate instruction) are known, we may perform constald-f
ing to turn the instruction into a load immediate of a constatue.

These optimizations play an important role in minimizing th
computation performed. Consider the following example rodpr
timized BPF+ code for the filter “tcp[13] & 7 |= 0"

Ih [12],rO
jne r0, #ETHERTYPHP, L19
b [23], r1
jne  rl, #IPPROTOTCP, L19
Ih [20], r2
and  r2, Ox1fff, r3
jne 3, 0x0, L19
L7: li #13, 14
b [14], 5
and 5, Oxf, r6
Ish 6, 0x2, r7
L11: add r4,r7,r18
L12: Ib [r8 +14], 19
L13: i #7,110
and r9,rl0, r11
L15: i #0, r12
L16: sub  rl1,rl12,r13
jeq  rl3,0x0, L19
ret #TRUE
L19: ret #FALSE

Line L7 shows doad immediaténstruction that is used in line
L11 to load thel3t" byte of the TCP header. Sinegldis a com-
mutative operator, we can replace the referencettwith the im-
mediate value 13 and change the instruction t@dd immediate
Since line L11 is followed by doad byte indirectinstruction on
line L12, we can fold in the immediate 13 into the index of libed
byte indirect(to get 27) and remove line L11 from the code.

On line L13, we notice anothdoad immediatehat is used on
the next line. Sincandis a commutative operator, we can perform
constant propagation again and replace the refereneéavith
the immediate 7. On line L15, there id@ad immediatehat may
be removed by constant propagation. But after its substituline
L16 becomes aubtract immediaténstruction — subtracting the
constant #0 fromr11. We notice that this is an ALU operation by
an identity, and therefore can be removed completely. Hetld
code after all of these peephole optimizations have bedarpezd:

Ih [12],rO
jne 0, #ETHERTYPHP, L14
Ib [23], r1
jne rl, #iPPROTOICP, L14
Ih [20], r2
and  r2, Oxifff, r3
jne  r3,0x0, L14
Ib [14],r5
and 5, Oxf, r6
Ish 6, 0x2, r7
Ib [r7 +27], 19
and r9,0x7,r1l
jeq  rll, Ox0, L14
ret #TRUE
L14: ret #FALSE

6.3 Lookup Table Encapsulation

load from a scratch memory location preceded by a store to the The example above showed how redundant loads can be removed.
same location may be changed into a copy operation. An add or These opportunities arise often in expressions that chexcket

subtract immediate instruction followed by an indirectdanay be
merged with the built-in index calculation.

field against a set of possibilities, asinsrc host A or B or CThe

code generator output for this expression is:



Ih [12],r0
jne  r0, #ETHERTYPHP, L4
Id [26], r1
jeq rl, #A,L13
L4 h [12],r2
jne  r2, #ETHERTYPHP, L8
Id [26], r3
jeq r3,#B,L13
L8 h [12],r4
jne 4, #ETHERTYPHP, L12
Id [26], r5
jeq 15, #C, L13
L12: ret #FALSE
L13: ret #TRUE

After peephole optimization and redundancy eliminatioages
have completed, the filter has been reduced to the following:

Ih [12],rO
jne  r0, #ETHERTYPHP, L6
Id [26], r1
L3: jeq rl, #A L7
jeq rl, #B,L7
jeq rl,#C,L7
L6: ret #FALSE
L7: ret #TRUE

Note the contiguous sequence of conditional branches- start
ing at line L3. We can optimize this linear chain of conditibn
branches, especially when the chain is long, by arrangingata
lookup table instruction. In general, to identify poteht@okup
tables, we traverse the control-flow graph looking for chadrf
blocks containing only conditional branches. Lookup tatiiains
have the following properties: the chain’s backbone isduhly
all false or all true branches; all of the other branches tpiirihe
same exit node; each element of the chain dominates thefitbgt o
chain; and all of the conditional branches in the chain tessame
value. The example code after lookup table enscapulatisinaan
below:

Ih

jne

Id

or table

[12], 10
10, #£ETHERTYPEP, L4
[26], r1
rl, #A, #B, #C, L5
L4:  ret #FALSE
L5: ret #TRUE
While this approach finds most of the lookup tables, we can ex-
pose more lookup table chains by reordering the constitnedés
of a more general chain. However, we may only reorder a node if
there are no data dependencies that would be altered. Weeean r
quire that the block to be moved be empty of all computatiames
the final conditional branch. This is not as restrictive asoiinds,
due to the effectiveness of our partial redundancy elinonat
Once the lookup tables have been abstracted, heuristies (de
scribed later) can turn them into combinations of linearceabi-
nary search and hashtable lookup. Thus, we incorporatediee ¢
design structure and optimizations of PathFinder and DRH@s-
level optimization at the tail end of our optimization framwak.

6.4 Register Allocation and Assignment

Before we run our intermediate code on the BPF+ virtual maeghi
we must map the virtual registers that remain in the optichizede
into the 32 real registers available in the virtual machine.

We use a graph-building algorithm to perform this task. Each
register is represented by a node in a graph. For each registe
compute a liveness range (i.e., a lifetime), which is thedfsa-
sic blocks between a register’s definition and its last useheiv
two registers have overlapping lifetimes, we place an edgeden
them. This results in amterference graphThe registers in a con-
nected subgraph of the interference graph have lifetimasith
terfere with one another, although they might not all be &v¢he
same time.

Each subgraph’s virtual registers may be mapped to physical
registers independently of the other subgraphs becaugelifbe
times do not intersect. Two virtual registers in a subgragy m
be assigned to the same physical register if there is no edge b
tween them. We use a graph coloring scheme to perform this as-
signment [3].

We have little worry that we will run out of virtual machine
registers because the size of each subgraph is typicallly anthis
generally bounded by the size of the largest predicate. diitiad,
registers often have short lifetimes because after opétita, their
predicates are computed and used only once. In fact, mdsteegy
are live in only one basic block. Those that live longer tead t
occur in OR and AND chains which have already been collapsed
into lookup tables by the lookup table encapsulation phase.

7 The Back End

7.1 Safety Verifier

Since the BPF+ filter code interpreter is run in a protectesaiao,
the validity of the program must be checked. A user task mest b
prevented from installing a program that would execute éinite
loop, or would cause memory faults by reading, writing, enjing
out of bounds.

In a program, a loop is represented as a jump to a previously
executed piece of code. In most correct programs, eachideraf
the loop will check a predicate to determine whether to cardior
exit out of the loop. However, in general, the value of thisdicate
cannot be predicted at compile-time, and is often deperaietiie
inputs to the program. Since any program that runs in a pi@dec
domain must terminate, and since the protected domain dmamal
trust user code, we must be able to identify which progranis wi
loop forever and which will terminate. Consequently, thetpcted
domain must solve thiealting problemwhen accepting a filter pro-
gram. In general, this is intractable, but by adopting yalrénign
restrictions, verification can be made trivial. Namely,€filpro-
grams must be acyclic, with all branches forwardly directed

Further verification entails checking that all opcodes ai&ly
that all jumps are forward and within bounds, that the teatiig
operation is a return instruction, and that all reads andeario
memory are within bounds. If a malicious filter program weke a
lowed to indiscriminantly read or write data, it could cgtithe
protected memory space. In BPF+, loads and stores to scratch
memory are indexed by an immediate, thus, we can verify their
validity during this phase. However, since we cannot provatw
the bounds on an indirect load from packet memory will be, we
employ runtime bounds checks on each load to ensure safety. |
any load tries to read out-of-bounds memory, the filter ipgeal
and the packet is discarded.

7.2 JIT Assembler

Once the filter program has passed the safety verifier, it reayib

in the BPF+ virtual machine or may be JIT assembled into aativ
code. The speed advantages of an assembled filter prograrad sho
be clear, and indeed, our results show that assembled pnsgra

up to 6 times faster than their interpreted counterpartsrodl&ra-
SPARC lli processor.

There are two phases of JIT assembly. First, we translate the
lookup tables into an optimized sequence of linear, binafyash
checks of the values inside. Then, since the target macliiae o
has tighter register availability constraints than the BRAttual
machine, we perform another phase of register assignment.

9 Any acyclic program can be expressed using only forward gimp



7.2.1 Lookup Table Translation

The first stage of the BPF+ assembler translates each loakilp t
instruction into an optimized sequence of native code tiesions.
A naive approach might just translate the table into a lirear
quence of predicates, but this is no better than what weestarith.
When there are more than several predicates, the overhesdsa
the lookup to slow down linearly with the number of predicate

Consequently, we may turn the table into a balanced bineey tr
This would have the effect of making the average case loofuple
to the worst case lookup. The overhead of the lookup would slo
down as the log of the number of predicates.

As a third alternative, we can turn this table into a hasletabl
with a perfect hash function (since we know all of the entaes
compile-time) and get constant time access. For small ntsrdfe
predicates, the overhead involved in computing the hasbtifum
may be too great, but for larger tables, this approach wordt w

How do we know which one to pick? Currently, we use a static
heuristic based on an evaluation of how each representpéon
forms as a function of the number of predicates. Recent pdper
Yang, Uh, and Whalley [21, 23] suggest the use of a profileedri
approach to determine whether to implement multiway braach
using hash lookup, or to simply reorder the branches in aesequ
tial lookup to reduce the dynamic number of branches enevedt
during program execution.

7.2.2 Register Assignment

The native code phase of register assignment is somewha mor
delicate than the first phase, due to the greater registasyre
found in most architectures. In an UltraSPARC with register-
dows, our simple assignment scheme is constricted to thef
registers. An assembler for an x86 is constrained to only six

If there are enough registers in the native code to run agarti
ular filter directly, we skip this second register assigntrgmase.
However, when we must compress a filter's use of registersewe
run the register assignment algorithm used before with baege.
Instead of using liveness ranges that are sets of basic $)loak
construct a register’s lifetime as the set of pseudo instas be-
tween its definition and last use. This finer granularity letseuse
registers within a basic block, thereby minimizing our ugeegis-
ters subject only to data dependencies.

If we still cannot fit the filter in the specified smaller number
of registers, we must take the drastic step of spilling extiaies
to memory. We use a graph coloring algorithm to identify veher
spills must take place and add in the auxiliary code for isgjland
restoring the data values.

8 Evaluation

To demonstrate the efficacy of our compiler and optimizafiame-
work, we have built all of the components described herailme
nating in a comprehensive implementation of the BPF+ azchit
ture. We measured the performance characteristics of tHe+BP
compiler — its ability to generate and optimize BPF+ byteesd
and the speedup in filter execution attained from JIT asserite
also compared the effectiveness of our global data-flowmops-
tion against the optimizations performed by an optimizingdn-
piler. We show that for the packet filter application, ouriopta-
tions are far more effective than those utilized by the C citenp
Our experiments illustrate several performance measinags t
we think have not been addressed in earlier work. In padicwe
draw a distinction between measurements of filters that nde-i
pendent high-level predicates and measurements of filtatase
predicates which may be coalesced into a lookup table.

Our experiments were run on a Sun Ultra 10 workstation with a
300 Mhz UltraSPARC Ili processor. 100,000 packets wereréitte
in each experiment; the running time for each filter was measured
with the CPU tick register, enabling us to get accurate cgolats
of the time spent on each individual filter.
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Figure 6: Average times to recognize packets with optimized
JIT assembled filters having various numbers of independent
predicates. Lower numbers are better.

In Figure 6, we show the speed of filtering various numbers of
independent predicates — TCP, src A, dst B, port C, and né&twor
D connected in a chain by either “and” or “or”. There are sixame
surements of the optimized JIT assembled filters, three isigow
the average, accept and reject times for the chains linkgether
by “and”, and three showing the same results for the samenghai
linked together by “or”. As expected, the time to reject an@in
has the same upward trend as the time to accept an AND thain.

In contrast, the time to accept an OR chain stays low because
the earlier predicates, if matched, halt the filter and refliRUE
immediately. The average time reported for both AND and OR
chains are similar and hover between 200 ns and 300 ns. This is
comparable to filter speeds reported in the literature.

In Figure 7, we show, for non-independent predicates, thedp
of filtering when a lookup table is implemented by a linear se-
guence of conditional branches, an O(1) perfect hash fam¢tach
hash table entry has one conditional branch to ensure a jnatah
the equivalent filter coded in C and run through the GCC (egcs-
2.91.60) optimizer at its highest optimization leVél.BPF+ per-
forms better than C in both cases, primarily due to BPF+'sined
dant predicate elimination. Since redundant predicatastioften
occur in user-level C code, GCC does not perform the elironat
optimization that BPF+ does. In addition, the translatibfilter
code into native machine code has lowered the penalty thaewe
for increased numbers of conditional branches in the firteirfil

In addition to these measures, we examine the speedupeattain
using the optimizations found in BPF+. In Figures 8 and 9, we
show the filter times for unoptimized interpreted, optintizeter-
preted, unoptimized JIT assembled, and optimized JIT asleeim
packet filters for both independent and non-independenligates.

For independent predicates, the speedup improves significa
(from 3.5x to 9x) as the number of filters increases, whichagho

10The packets are from normal network traffic in the UCB compsitéence domain.

1 The last “Accept AND chain” measurement is left off the graggitause the par-
ticular expression was never accepted.

125ince there is no modern implementation of the original 1883ion of BPF, we
do not include it in these measurements.
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the effectiveness of our optimization algorithms and JiSeasbler.
The speedup due to optimization alone varies from 1.3x too2x f
unoptimized code, and from zero to 1.4x for optimized codee T
speedup due to the JIT assembly by itself varies from 3.9x6r 6
for unoptimized code, and from 3.3x to 5x for optimized code.
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Figure 9: Average times to recognize TCP packets with vari-
ous numbers of source hosts. Lower numbers are better.

interpreted code and optimized, assembled code.

Overall, our measurements indicate that optimization igvan
portant factor in packet filter performance, especially witem-
piled from a high-level source language such as the one fé+BP
The template-matching heuristics that PathFinder and B¥eFate
effective in discovering lookup tables when filters are teritin a
low-level way, but they will not work for more general filterg/e
had hoped to compare our results to those reported by thenturr
state-of-the-art, DPF, but did not have access to theirrerpetal
data or their platform. However, if we account for differesdn
processor speed, our data suggests that the performarnioelis.s

9 Future Work and Summary

There are several different directions to explore in futtegelop-
ment of BPF+. We have chosen to use a high-level functioreal-pr
icate language based tapdump we could add primitives that side
effect the store to implement user-level state variableserable
user-level demultiplexing. We might also add the abilityspecify
large tables of packet information to be matched in a filtee. did
not optimize our implementation for fast compilation; thB®F+'s
support of online updates to packet filters is limited.

In the BPF+ virtual machine instruction set, we would like to
add the ability to use backward branches, in order to allap$an
the code. This would provide the ability to parse IPv6 “esten
headers” as well as the ability to implement other, more gg#ne
control structures. Not only would this change have an irhpac

When we look at the non-independent predicates, we see a morethe implementation of our optimization algorithms, but ibwid

dramatic story. The unoptimized, interpreted filter shotvikisg
evidence of the naive code generation’s production of rddoh
predicates. The optimized, interpreted filter strips omadt all
of these redundancies. The trends for both assembled fdters
the same as the interpreted filters, but the overall runrimg s
much improved. The speedup due to optimization varies fram 1
to 8.6x for interpreted code, and from 1.2x to 5.2x for asdechb
code, while the speedup due to assembly runs from 4.1x tofér5x
unoptimized code, and from 2.6x to 4.9x for optimized code.
Even though the improvement for non-independent predicate
is more dramatic than for independent predicates, theiirusem-
bination more accurately reflects the type of filters usechieyret-
work community. For example, on two large (27 and 29 predigat
filters used daily by Vern Paxson at Lawrence Berkeley Naition
Laboratory, we see speedups of 32x and 36x between unoptifniz

also impact the ability of the safety verifier to ensure tratecmi-
grated across the protection boundary does not enter iritdiaite
loop. Necula’s proof-carrying code work [18] appears to lsiig
able framework in which to define and enforce a semanticsior t
protected execution of more general packet filters.

BPF+ packet filters currently return a boolean true or faldae.
Some users have expressed interest in a more complicated ret
result that indicates which of the predicates in the filtetahed
the packet. This is a hard problem because the code generator
ates many more predicates than are specified by the userr Afte
passing through the optimizer, there may not eleera mapping
from the resulting predicate expression back to the usecifipd
expression. However, for many purposes, just knowing sedea-
formation about the packet may suffice, e.g. in an intrusitector
that uses many different ways to detect intruders, if a peaierce



matches the source found in a large intruder table, we miggtt j
want to know the packet’s source address, and not care ahgput a
of the other predicates that may have matched.

Our experience with BPF+ has shown that you can start with
a high-level language and can compile and optimize packetsfil
into an efficient implementation. Through the novel appiaa of
the “redundant predicate elimination” global data-flowiopta-
tion, our high-level boolean predicate language can be dethp
optimized, and JIT assembled into code that performs asavell
better than the current state-of-the-art packet filter pgek.
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